allenact_plugins.robothor_plugin.robothor_models
#
ResnetTensorGoalEncoder
#
class ResnetTensorGoalEncoder(nn.Module)
ResnetTensorGoalEncoder.get_object_type_encoding
#
| get_object_type_encoding(observations: Dict[str, torch.FloatTensor]) -> torch.FloatTensor
Get the object type encoding from input batched observations.
ResnetTensorObjectNavActorCritic
#
class ResnetTensorObjectNavActorCritic(ActorCriticModel[CategoricalDistr])
ResnetTensorObjectNavActorCritic.recurrent_hidden_state_size
#
| @property
| recurrent_hidden_state_size() -> Union[int, Dict[str, Tuple[Sequence[Tuple[str, Optional[int]]], torch.dtype]]]
The recurrent hidden state size of the model.
ResnetTensorObjectNavActorCritic.is_blind
#
| @property
| is_blind() -> bool
True if the model is blind (e.g. neither 'depth' or 'rgb' is an input observation type).
ResnetTensorObjectNavActorCritic.num_recurrent_layers
#
| @property
| num_recurrent_layers() -> int
Number of recurrent hidden layers.
ResnetTensorObjectNavActorCritic.get_object_type_encoding
#
| get_object_type_encoding(observations: Dict[str, torch.FloatTensor]) -> torch.FloatTensor
Get the object type encoding from input batched observations.
ResnetFasterRCNNTensorsGoalEncoder
#
class ResnetFasterRCNNTensorsGoalEncoder(nn.Module)
ResnetFasterRCNNTensorsGoalEncoder.get_object_type_encoding
#
| get_object_type_encoding(observations: Dict[str, torch.FloatTensor]) -> torch.FloatTensor
Get the object type encoding from input batched observations.
ResnetFasterRCNNTensorsObjectNavActorCritic
#
class ResnetFasterRCNNTensorsObjectNavActorCritic(ActorCriticModel[CategoricalDistr])
ResnetFasterRCNNTensorsObjectNavActorCritic.recurrent_hidden_state_size
#
| @property
| recurrent_hidden_state_size() -> int
The recurrent hidden state size of the model.
ResnetFasterRCNNTensorsObjectNavActorCritic.is_blind
#
| @property
| is_blind() -> bool
True if the model is blind (e.g. neither 'depth' or 'rgb' is an input observation type).
ResnetFasterRCNNTensorsObjectNavActorCritic.num_recurrent_layers
#
| @property
| num_recurrent_layers() -> int
Number of recurrent hidden layers.
ResnetFasterRCNNTensorsObjectNavActorCritic.get_object_type_encoding
#
| get_object_type_encoding(observations: Dict[str, torch.FloatTensor]) -> torch.FloatTensor
Get the object type encoding from input batched observations.